

Study of the transfer of a biosourced resin by thermal nanoimprint

Paule Durin^{1,2}, Céline Chevalier¹, Aziz Benamrouchel¹, Radoslaw Mazurczyk¹, Yann Chevolot¹, Didier Léonard², <u>Jean-Louis Leclercq</u>¹

¹Univ. Lyon, CNRS, INSA Lyon, Ecole Centrale de Lyon, Univ. Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, F-69134 Ecully, France

²Univ. Lyon, CNRS, Univ. Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, F-69100 Villeurbanne, France

Context

- **Lithogreen** ANR project (ANR-19-CE43-0009) aims at the replacement of current (Deep) UV photolithography synthetic resists for micro/nanofabrication
- Polysaccharides from biomass as water developable eco-friendly (Deep) UV photolithography resist

J-NIL 2023, Lyon

From lab-scale

to

pilot line scale

Towards to eco-friendly resists

Lithography

Photoresist.

Photo-sensitive material Photo Acid Generator (PAG)

Solvent.

Solubility in solvent For cleaning (EBR + BS rinse)

Developer.

To reveal 3D patterns

Conventional resist

Issued from petrochemical industry

Polyacrylates, polystyrenic... resists Ionic or non-ionic salts (sulfonium...)

Organic solvents

PGMEA, Ethyl Lactate, PGME...

PGMEA

Alkaline aqueous solution

TMAH 2.38%

Bio-sourced resist

Polysaccharides extracted from natural sources

Chitosan, Methylcellulose, Alginates, ...

Deionized water

From biomass source water soluble resist

CHITOSAN PRODUCTION

Outer shells of crustaceans

OH OH OH OH OH OH

Chitin

2nd most **abundant biopolymer** on earth

Prod. > 10,000 tons / year

Elieh-Ali-Komi D., Hamblin M. R. (2016)

CHITOSAN PROPERTIES

- ✓ **Film** forming and low surface roughness
- ✓ Good **adhesion** on Si substrate
- ✓ Production free of metallic ions
- ✓ **Sensitive to DUV** irradiation & E-beam

- ✓ Non-hazardous
- ✓ Bio-sourced, bio-degradable
- ✓ Soluble in low acidic-based water (pKa ≈ 6,5)
- > Chitosan used as water-soluble and developable photoresist

Nanoimprinting of Chitosan films?

Objective: single-step nanoimprinting lithography of chitosan at nanoscale without the introduction of additional chemistry

- \rightarrow Substrate : 2,5x2,5 cm², 300 nm de SiO₂/Si <100>
- \rightarrow 250 nm thick films : C (chitosane) =1% (m/v), DA 35%, Mw=613 kDa, Mn=351 kDa, H₂O=13,5%
- → Silanized nanopatterned Si molds : microlines and nanodots features

Setting parameters Thermal Nanoimprinting:

- Chuck/Stamp temp : up to 450°C
- Pressure (force): up to 4000 N
- Step & repeat mode:
 - Stamp from: 2 to 40 mm²
 - Substrate: from 1 cm² up to 200 mm
 - Alignment < 300 mm
- UV NIL@365 nm

Y.G. Bi et al, Nanophotonics, 7 (2017)

SET NPS300 – Nano-Patterning Stepper

Thermodegradation of chitosane*

- Powder and film analysis: from room temperature to a "plateau" from 140°C to 200°C, the polymer only loses water. Then two phases of degradation
 - a first phase from 250°C to 350°C generates the formation of water, carbon monoxide, carbon dioxide and, depending on the AD, ammonia and acetic acid from the acetyl group
 - between 450°C and 750°C, this is the second degradation phase characterized by the formation of methane and a graphite-like carbon compound
- No Tg observed!
- → Softness vs. hardness of film during nanoimprint?

*Results from PhD thesis of M. Caillau "Green nanotechnology: polymers of biomass as eco-efficient resins for lithography" 05/10/2017 @INL

First test

- Mold pattern : lines l= 3-4μm h=400nm, period 5μm
- T=150°C, during 1200s, F=4000N, during 1800s

Observations:

- Imprinted depth of 40-60nm at best!
- Strong 'rabbit-ear' effect
 - ✓ Wetting of chitosan along wall tranches of the mold
 - ✓ Incomplete filling of trenches
 - ✓ Pulling out during demolding step
- → surface-to-volume ratio of trenches effect?

Second test

- Mold pattern : Holes Ø500nm h=200nm, period 1μm
- T=180°C during 1200s, F=2600N during 2100s

Observations:

- Imprinted depth of 180 nm at best
- Less than 20 nm remaining resin at the bottom of the holes
- 'rabbit-ear' effect still present even by decreasing the dimensions
- → Thermal/pressure to be adapted?

last test

- Mold pattern: Holes Ø500nm h=200nm, period 500 nm
- Imprinting parameters :
 - ✓ Chuck and mold both heated @ 180°C (20 minutes)
 - √ F=2600 N during 2100 sec
 - ✓ Slow cooling and removal:
 - Pressure maintained when T ≥ (15min)
 - Pressure drop by 2min steps

Last test nanoimprinted chitosan: AFM observations

At border of sample

- Very nice and uniform imprinted surface
- Small 'rabbit-ear' at border → thicker part ?
- Not perflecty flat surface in centre → filling not achieved ?
- Still remaining resin at the bottom of the holes J-NIL 2023, Lyon

In the centre of sample

cooling conditions well change the release

Chitosan-SiO2 hardmask transfer: descum step

RIE parameters : O₂=40sccm; P_T=50mT; RF=40W

Before descum

After 3 seconds

After 3s +3s

Only 6 sec are needed for a perfect descum!

Chitosan-SiO2 hardmask transfer after descum

RIE parameters : CHF₃=100sccm; P_T=50mT; RF=140W; t=8min

Stripping O₂=100sccm; P_T=100mT; RF=100W; t=2min

- Very nice and uniform surface
- Trenches: depth of 303 ± 1 nm angle wall
 ≥ 70° (AFM tip limit)

SiO2 hardmask transfer in bulk Si

ICP-RIE parameters : O_2 =4,5sccm; Cl_2 =22sccm; P_T =0,3mT; P_{ICP} =100W; P_{RF} =143W; t=9min45s (RF bias = -340V)

AFM: Very nice and uniform surface

 Trenches: depth of 600 minimum due to AFM tip limitations

SEM : Good vertical > 1,6µm deep holes

→ Respect of nanoimprinted features!

J-NIL 2023, Lyon

Concluding remarks

- Ability to use **biosourced resin** films without chemical additives in thermal nanoreplication techniques under relatively mild conditions.
- Chitosan excellent properties under engraving plasmas (Descum + SiO2 transfer + Stripping) allow their exploitation in micro-nanofabrication
- Better imprinted chitosan when lowering cooling conditions and removal of mold
- To be tested?
 - Lower Temperature
 - Pressure application at room temperature before heating
 - **–** ...

Acknowledgements

LITHOGREEN project () partners Paule Durin, Yann Chevolot from INL Olha Sysova, Olivier Soppera from IS2M Alexandre Teolis, Stephane Trombotto, Thierry Delair from IMP Corinne Gablin , Didier Leonard from ISA Isabelle Servin, Arnaud Bazin, Aurélien Sarrazin, Benoît Saudet, Raluca Tiron from CEA-Leti LITHOGREEN Chitosan as a green resist for photolithography. Grant ANR-19-CE43-0009